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Abstract. On the basis of long simulations of a binary mixture of soft spheres just below the
glass transition, we make an exploratory study of the activated processes that contribute to the
dynamics. We concentrate on statistical measures of the size of the activated processes.

1. Introduction and motivation

It is well known that the relaxation times in glasses become extremely long when the glass
transition is approached [1]. In fragile glasses, the relaxation times definitely increase faster
than a simple Arrenius behaviour, for example the viscosity can be fitted by the Volger–
Fulcher law, exp(A/(T − Tc)). In the standard picture of activated dynamics, this increase
of the relaxation times implies an increase of the energy barriers relevant to relaxation
processes. A divergence of the energy barriers atTc can hardly be explained without
assuming some form of cooperative behaviour. Indeed, most theoretical proposals to explain
fragile glass behaviour assume that the dynamics is dominated by very slow processes in
which a large number of particles are rearranged [2].

Extensive numerical simulations have been performed on glasses [3, 4], and the
behaviour of the diffusion constant (whose definition involves just a single particle) has
been carefully studied. Unfortunately there are practically no studies of the relaxation
processes which occur in glasses and of their morphology (for example, the number of
particles involved and their displacements). One of the most notable exceptions is the study
of [5] where a rearrangement of four particles was observed.

The aim of the present study is essentially exploratory. We simulate a binary mixture
of soft spheres just below the glass temperature and address ourselves to the problem of
identifying the activated processes and of studying their properties in a systematic statistical
way. We present the techniques we have used and the results we have obtained. We have
concentrated most of our attention on the number of particles involved, or rather the spatial
extent of the activated process, and we present two different techniques to compute this size.
A careful study of the temperature dependence of the quantities that we have measured would
be extremely interesting, but it goes beyond the limits of this work. Detailed theoretical
predictions for these quantities would also be welcome and we hope that this note will
stimulate research.
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The paper is organized as follows: sections 2, 3 and 4 describe the simulation data and
the remaining sections 5, 6 and 7 are concerned with the analysis of activated processes.
In section 2 we discuss the model and the simulations that we have performed, section 3
deals with the issue of thermalization and in section 4 we analyse our data using some of
the distributions usually considered. In section 5 we consider the technique of cooling to
accurately find jumps and count them, sections 6 and 7 deal with two methods of viewing
the spatial distribution of the displacements associated with the activated processes. Because
the study is exploratory, we give no conclusion.

2. The simulations

2.1. The model

We use a molecular dynamics (MD) approach with leapfrog algorithm [6]. The positions
and momenta of all the spheres are tracked at interleaving times, and are updated as follows:

ri (t + δt) = ri (t)+ δtpi (t + δt/2)
pi (t + δt/2) = pi (t − δt/2)+ δtFi (r(t)).

(2.1)

Wherei labels the spheres,Fi is the force acting on theith sphere andδt is the time step.
Because our goal is to look in detail at the activated processes underlying the dynamics,

a small system is acceptable and we have used this to advantage in writing a simple yet fast
code running on APE [7] by directly summing over all atom pairs in the force calculation
rather than deal with neighbour lists that are complicated on multi-processor machines.

We consider a total ofN = 512 spheres in a periodic box of size 8× 8× 8, and use
a standard technique to prevent the system crystalizing by working with a 50% mixture of
two different types of sphere with different effective radii [5]. The sphere species label is
written α = 1, 2, the radii areσα and the potential between spheres is,

Vαβ =
(σαβ
r

)12
. (2.2)

Where,σαβ = (σα + σβ)/2. In this work we chooseσ1 = 1.0 andσ2 = 1.2. The masses of
the spheres are both set equal to one.

This system of soft spheres and its variants have been studied extensively [3, 5] and
the value of the melting and kinetic glass transition are known. The melting transition
occurs atT = 1.76± 0.06 [8] while the equilibrium glass transition is atTc = 0.56± 0.01
[3] . We shall work in the vicinity ofT = 0.5, just below the glass transition where the
dynamics is mainly due to the activated processes. This is in contrast to the situation at
higher temperature where smoother mechanisms are responsible for diffusion. Indeed, the
numerical method for finding the glass transition temperature is as the temperature at which
the smooth processes give vanishing diffusion.

The precise meaning of the glass transition has not always been clear: as temperature
is reduced and the relaxation times increase, the glass transition refers to the point at
which the relaxation times approach experimental timescales. Conventionally,Tg is the
temperature at which viscosities approach 1013 Poise, corresponding to timescales of order
104 s. Such timescales are completely inaccessible to computer simulations, and indeed the
glass transition temperature referred to in the preceding paragraph is notTg, but the kinetic
transition temperatureTc related to the critical temperature appearing in mode coupling
theory.

In [4], the importance of adequate thermalization when determining this equilibrium
Tc was stressed and threw some doubt on the value,Tc = 0.56± 0.01 quoted above. We
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shall discuss the thermalization of our samples extensively in section 3. Further difficulties
encountered in interpreting the results of computer simulations are related to the small
sample sizes and the unphysically rapid temperature changes. For example, the cooling
rates we employ are far more rapid than possible in practice, and this could lead to an
overestimate if we attempted to measureTg. In any event, the prevalence of activated
processes indicates that we are working in the temperature range of interest for this study.

In the formulae above, and throughout the paper, we have employed dimensionless
units for all quantities. It is sometimes helpful to be able to relate these figures to the
physical units corresponding to the Lenhard-Jones potential for argon. In such argon units,
temperatures are measured in units of 50 K and times are in units of 8.0× 10−13 s.

2.2. Data sets

We have collected four data sets starting with different initial configurations; let us call them
A, B, C, D. The individual characteristics of each one, and the details of the initial state
preparation are discussed below. Each data set is nominally atT = 0.5 and has the same
molecular dynamics parameters: that is a time step ofδt = 0.002 and a sampling of the
configuration every 104 such molecular dynamics steps (corresponding to a time interval of
20 units). The total run time for each data set is always greater than 105, but varies between
data sets; A: 2.6× 105, B: 5.2× 105, C: 1.4× 105, D: 1.8× 105. A and B are the most
interesting data sets, and for this reason, the longest. We find that the runs C and D are not
really long enough to obtain good statistics, but we have retained them for the purpose of
comparison.

All the initial configurations derive from a high-temperature molecular dynamics run
sampled at time intervals that yield independent configurations. To be precise, the high
temperature isT = 8.0 where we use a version of molecular dynamics that renews momenta
from a Gaussian distribution every 5000 steps with time stepδt = 0.001. The initial
thermalization is of three-million steps (corresponding to a total movement per particle of
1 ∼ 2 × 104), then four configurations are taken at intervals of 5× 105 steps (which
correspond to a movement per particle of1 ∼ 3.6 × 103). These four independent
configurations are then treated as follows.

(A) A slow annealing of three-million steps down toT = 0.5. The last configuration
of the annealing is the initial configuration for data set A. In argon units, this corresponds
to an unphysically fast cooling rate of 8× 1010 K s−1.

(B) A more abrupt annealing of 7.5 × 105 steps down toT = 0.5 followed by a
prethermalization consisting of 4× 105 steps with momentum updates intended to stabilize
the temperature. It is some of the later configurations of this data set B that have been
cooled as discussed in section 5.

(C) A direct quench down toT = 0.5 by rescaling the momenta followed by a brief
prethermalization consisting of 2000 steps. No jumps of the type in figure 1 are observed in
this data set which is at a slightly lower temperature, and it has therefore not been extended
as far as A or B.

(D) A history like that of set B, with an annealing followed by prethermalization with
the same parameters as B. In this case the temperature turns out to be slightly higher than
in the other runs and for this reason the jumps we observe are not very sharp.
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Figure 1. Mean-squared movement with respect to first configuration of the run, small spheres
(upper curves), and large spheres (lower curves). Note that the time axis is scaled differently
for the different length runs.

2.3. Displacement

The probability distribution for the distances moved by each sphere after a given time gives
a good initial idea of the processes we are interested in analysing. The simplest quantity
to consider is the mean squared distance moved. When this is calculated in a periodic
geometry there is some latitude in the precise way of taking account of spheres that have
migrated around the periodic borders. Here we have stored the configurations in such a
way as to keep track of this information by writing the coordinates,x ∈ (−∞,∞), as the
periodic part,xpbc ∈ (0, L), plus the winding part that is an integral multiple ofL. We
define the movement1i(t, t

′) of the ith sphere between timest and t ′ using coordinates
with the centre of mass (r = 1

N

∑
i ri) removed.

1i(t, t
′) = |ri (t)− ri (t ′)|2. (2.3)

The mean squared movement is then,

1(t, t ′) = 1

N

∑
i

1i(t, t
′). (2.4)

In figure 1 we show the mean squared movement with respect to the first configuration.
There are wide variations in behaviour because the small temperature differences between
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Table 1. Average energies for each data set, after removal of a thermalization period of 0.5×105

(see discussion at the end of this section).

Data set

A B C D

Total E 7.326 7.261 7.254 7.330
Kinetic E 0.79 0.77 0.76 0.80
Potential E 6.54 6.49 6.50 6.53

the data sets have a large effect on the rate of diffusion. Note that in this, and subsequent
figures the time axis is scaled differently according to the length of the different data sets.
This figure indicates that the movement is not smooth, but progresses by a series of jumps
which correspond to the activated processes we are interested in.

3. Thermalization

Because we work at temperatures slightly below the glass transition, it is essential to discuss
to what degree equilibrium is achieved and to what extent our simulations are representative.

The molecular dynamics is at constant energy without any rescaling of momenta for
stability during the course of the simulations. Our choice of MD time step is conservatively
small, and the total energy always remained stable throughout the runs to an accuracy of
order 0.001. No consistent drift was apparent even over the very longest time scales in data
set B.

The data sets A and D are at slightly higher total energy than the other pair and each
run is at a slightly different temperature. Table 1 shows the values of the energies averaged
over the duration of each complete run.

Data sets C and D are at slightly low and high temperatures respectively and
correspondingly we find few jumps in C and smoother behaviour in D.

We have not given errors in the table because there is some consistent relaxation during
the course of the runs which becomes clear on a closer investigation of the kinetic energy
shown in figure 2. The potential energy decreases slightly and the kinetic part increases.
This is most noticeable in the beginning part of the plots where it indicates insufficient
thermalization in the preparation of the initial states. However, it is also clear that even
over the very long time scales of data set B that relaxation continues.

These observations suggest that the system relaxes to a lower potential well in the
energy surface. That this process can be seen in simulations is indicative of the smallness
of the system and the very long runs. With these data it is not possible to deduce anything
concerning dependence on the method of preparing the initial sample.

Another sign of the relaxation comes from the size of the move between subsequent
configurations. Since this data is relevant to later developments we show it here. In
figure 3 the value of1(t, t + 20) between successive configurations is plotted. Each data
point is averaged over 100 configurations. Again an initial relaxation is apparent. It is
noticeable that even over the very long run B, there are significant variations in the degree
of activity.

In subsequent sections where we consider time-averaged quantities we have removed an
initial thermalization period from the start of each data set. The length of this thermalization
period has been fixed at 0.5× 105 time units from a study of figures 2 and 3. We see that



5916 D Lancaster and G Parisi

0

0.74

0.76

0.78

0.8

0

0.74

0.76

0.78

0.8

0

0.74

0.76

0.78

0.8

0

0.74

0.76

0.78

0.8

A B

C D

Figure 2. Kinetic energy against time. Each point has been averaged over 200 measurements
taken over a period of 800 time units (corresponding to 40 configurations).

this procedure still leaves some long time relaxation and variation in degree of activity in
the case of B. This observation throws some light on the puzzling behaviour of the lowest
temperature data set C which shows a surprisingly high degree of activity in figure 3 despite
its small overall movement shown in figure 1. It seems likely that the whole of the run C
corresponds to one of the active periods of B and that a thermalization time longer than
0.5× 105, and in fact longer than the whole run, is needed. This should be born in mind
for later analyses.

4. Diffusion distributions

Various probability distributions of the step movement have been investigated at higher
temperatures in the work of Hansenet al [3] for soft spheres and more recently for Lenhard-
Jones spheres by Kob and Andersen [4]. We first consider the probability distribution of
the movements of the individual spheres between configurations,P1(1(t, t + 20)). This is
defined as,

P1(1) = 1

N

∑
i

δ(1−1i(t, t + 20)). (4.1)

When calculated for a single pair of configurations, the distribution is noisy but the tail
corresponding to activated processes is visible in cases where there is a jump.
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Figure 3. Relaxation of an average step movement with time. Each point has been averaged
over 100 measurements taken over a period of 2000 time units.

In figure 4 we show this quantity averaged over the time duration of the data set (with
the initial thermalization period removed). We use a logarithmic scale to see the small
contribution of large motions.

The tail of the distribution shows behaviour indicative of diffusion since the probability
distribution decays exponentially with1. The diffusion is due to the activated processes, in
contrast to the situation at higher temperature where smoother mechanisms are responsible.
The time step of 20 units is not long enough to justify the distribution one would expect
from diffusion,∼ exp(−1/4Dt). If nevertheless we use this formula to define an effective
diffusion constant, we find values of order 3∼ 4× 10−3, which are somewhat larger than
the values found by other methods in [3].

It is sometimes useful to consider probability distributions in time. In figure 5 we show
the probability distribution of the mean square step displacement,P2(1(t, t + 20)). For a
run of S configurations this is defined as,

P2(1) = 1

S

S∑
t

δ(1−1(t, t + 20)). (4.2)

In comparison with (4.1), this probability distribution shows the variations in time of a
spatially averaged movement. The tail should indicate the likelihood of jumps, but there is
not sufficient data to determine its behaviour accurately. One would expect a tall narrow
peak with a small tail at low temperature, and a somewhat wider peak shifted to larger1 at
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Figure 4. Averaged probability distribution of a step movement,P1(1), shown with a
logarithmic scale. Upper and lower curves are for small and large spheres respectively.

higher temperature. Comparison of A and B correctly identifies their temperature ordering,
but there is insufficient data to make similar statements with regard to the shorter runs C
and D.

5. Cooling and locating jumps

5.1. Cooling

We have already seen that the motion of the system does not proceed smoothly, but rather
by a series of jumps. We now turn our attention to a detailed analysis of these activated
processes. The most clear definition of an activated process would be a movement between
different potential wells. This can only be determined unambiguously in the absence of
thermal fluctuations and motivates us to study configurations that have been cooled to zero
temperature.

The method of cooling we chose was to introduce an effective friction into the MD
equations by reducing the momenta by a factor of 0.998 for each time step. This technique
was found to be more efficient than a steepest descent-type method in which the initial
momenta are ignored. We made 5000 MD steps to cool each configuration and typically
reduced the kinetic energy to order 10−5. We have not cooled all configurations obtained,
but have decided to look at a fairly active part of the time evolution of data set B consisting
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Figure 5. Probability distribution of the mean squared step movement,P2(1). Shown only for
small spheres.

of a period of 0.2× 105 time units fairly early in the complete run. We have cooled the
1000 configurations from 3854 to 4854 of data set B. The effect of cooling is clearest if
we consider the total movement in the cooled set and compare with the original hot data.
Inspection of figure 6 makes it clear how thermal noise is removed.

In this time period we find 261 jumps which can be classified as one of two types.
Some of the jumps merely interchange a small number of particles and simply amount to a
relabelling of the configuration, whereas others are less simple and change the energy. For
example, in the first class we have seen motions which only relabel between two and five
particles, with all other particles remaining fixed. In the other class the major part of the
movement is still local, but all other particles must move by a small amount in order to
accommodate the new configuration. In this case it is less easy to say how many particles
are involved in the jump. The potential energy change occurring in the second class of
jump is sometimes very small and only related to a metastable state. In these circumstances
the cooling is providing excessive information about small features of the potential surface
which would be washed out in a finite temperature simulation. This effect is also apparent
in the cool plot of figure 6 where many of the 261 jumps are small and should not be
regarded as important processes.

Given this technique of unambiguously finding jumps in the cooled data it is interesting
to see whether their presence can be accurately predicted by a study of the hot data. A direct
procedure would be to introduce a cut-off on the displacement. We find that this certainly
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Figure 6. Comparison of hot and cooled data for a fairly active period of 0.2 × 105 time
units taken from data set B. Mean squared displacement,1, is shown with respect to the first
configuration of this time interval. Upper and lower curves are for small and large spheres
respectively.

captures the larger jumps in the cooled data, but not all the smaller ones. On the other
hand, as mentioned above, small moves found by the method of cooling need not have any
significance. A good cut-off is a matter of empirical choice; in table 2 we consider cut-offs
in the mean squared displacement1(t, t+20), the mean quartic displacement12(t, t+20)
and the maximum (amongst the spheres) step size1max(t, t + 20). A cut-off on the energy
change is not effective. We use the same cut-off for large and small species of sphere,
but in effect it is always the small spheres that signal a jump. We show the fraction of
jumps found in this cooled set of configurations calculated using each criterion. The thermal
motion makes a cut-off in1 insensitive and we shall discard this method. Of the other
choices, the cut-off on1max seems to give closer results between the hot and cool data so
we prefer this technique.

Having identified suitable ranges for the cut-offs we use the same method to analyse the
complete thermalized data sets. Table 3 shows the fraction of jumps observed throughout
the runs.

From a comparison of the tables it is clear that the set of configurations we cooled were
indeed more active than the average of data set B. In table 3, A has a larger fraction of
jumps than B, as we would expect since it is slightly warmer. The shorter runs, C and D,
do not fit this pattern, however, presumably because of their limited data.
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Table 2. Fraction of jumps with size (according to various criteria) greater than some cut-off.
Shown for the set of 1000 cooled configurations and their hot counterparts.

Cool Hot

All jumps 0.271 ∼

1 > 0.01 0.089 1.0
1 > 0.02 0.017 1.0
1 > 0.03 0.002 0.411
1 > 0.04 0.0 0.074

12 > 0.002 0.133 0.368

12 > 0.003 0.091 0.201

12 > 0.004 0.069 0.154

12 > 0.005 0.060 0.117

1max> 0.3 0.184 0.300
1max> 0.4 0.156 0.209
1max> 0.5 0.128 0.163
1max> 0.6 0.086 0.128

Table 3. Fraction of jumps with size (1max) greater than some cut-off. Shown for complete
thermalized data sets.

Data set

A B C D

1max> 0.3 0.374 0.192 0.407 0.264
1max> 0.4 0.235 0.105 0.212 0.171
1max> 0.5 0.165 0.071 0.146 0.122
1max> 0.6 0.119 0.050 0.113 0.084

In a later section we will use this method to identify jumps and will fix the cut-off at the
conservative end of the range,1max> 0.6, in order to eliminate spurious processes relating
to metastable states.

5.2. Viewing activated processes

Activated processes are local disturbances and an intuitive way of visualizing them is to
locate the centre and plot the radial variation in the move size.

We choose to define the centre as the mean position weighted by the displacement

rc =
∑

i r(1i)
α∑

i (1i)α
. (5.1)

It does not correspond to the location of any particle. Because of the periodic boundary
conditions this definition actually requires some prior guess which is obtained from the
location of the largest move. For cooled data the method is then straightforward, but for
hot data another complication arises. Random thermal movements of spheres distant from
the true centre contribute excessively to the mean and must be suppressed. We do this by
weighting with a power,α, of the movement, rather than the movement itself. Empirically,
a power ofα = 2 (corresponding to weights12) is found to be adequate.
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Figure 7. Example of the movement of spheres plotted against the distance from the centre
of the jump. Hot (left) and cooled (right) data, and different weight factors1 (top) and12

(bottom). The example comes from configuration 4075 to the subsequent configuration of data
set B. The location of the centre varies slightly in each plot.

Once the centre is defined, the radial distribution is given by,

C1(r) =
∑

i 1
α
i δ(r − |ri − rc|)∑

i δ(r − |ri − rc|)
. (5.2)

Figure 7 shows an example of this distribution for a particular jump involving quite a large
number of particles. The plot is repeated with both hot and cooled data and also using
1 and12 in the weighting factor. The effectiveness of the weighting factor in reducing
thermal noise at large radius is apparent.

In applying the method to hot data it is important that a jump is truly present, otherwise
the centre will correspond to the location of some slightly larger than average random
movement. To check that there is a jump, a cut-off on the maximum move can be introduced
as discussed in the previous section. In figure 8 we use this technique to show an averaged
form of the distributionC1(r). We impose the conservative requirement for a jump by taking
the average only over jumps characterized by1max> 0.6 in the thermalized data. We have
plotted the distribution using a logarithmic scale to bring out the small contributions at large
radius from the centre. The variation between runs of the mean size for the jumps is too
small to be able to analyse temperature dependence.

In summary; this technique is helpful for intuition in seeing individual jumps but relies
on too many parameters to be a good statistical measure for activated processes.
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Figure 8. Averaged movement of spheres,C1(r), plotted against the distance from the centre
of the jump. Using hot data with a cut-off,1max > 0.6 on all thermalized data. We have used
the weighting powerα = 2.

6. Correlation

In this section we present an alternative method of determining the size of movement
without the need to prejudge the presence of a jump by introducing a cut-off. We evaluate
correlations between the displacements of different spheres by calculating the following,

C2(r) =
∑

ij,|ri−rj |<R(1i(t, t + 20)−1)(1j (t, t + 20)−1)δ(r − |ri − rj |)∑
ij,|ri−rj |<R δ(r − |ri − rj |)

. (6.1)

The quantity in the denominator is well known as the structure function. In the numerator,
note that we have subtracted the mean value of the displacement. This avoids the difficulties
experienced in the previous method of requiring weighting by powers of1 in order to
suppress long-distance thermal motion.R is the maximum distance on the periodic volume,
which is 4.0 in our case.

The quantityC2(r) contains little information when evaluated at a single time for a pair
of configurations. However, when averaged over the runs as shown in figure 9 it displays
an interesting structure. We see some oscillation as we expect for a quantity similar to the
structure function, but the major contribution is from adjacent spheres. SinceC2(r) tends
to go slightly negative at larger we have added a constant offset in order to be able to use
a log scale. This offset is clear in the figure since it corresponds to the plateau at smallr
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Figure 9. Correlations,C2(r), averaged over thermalized data. An offset of 2× 10−5 has been
added to allow a logarithmic axis.

whereC2(r) strictly vanishes. The mean jump size,
∫
C(r)r dr, varies little between runs.

It would be interesting to have theoretical predictions and better measurements for the
temperature dependence of this correlator.
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